skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Xiao, Quan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 24, 2026
  2. Free, publicly-accessible full text available April 26, 2026
  3. Free, publicly-accessible full text available April 24, 2026
  4. Free, publicly-accessible full text available December 10, 2025
  5. Free, publicly-accessible full text available December 1, 2025
  6. Abstract In this paper, we introduce a bilevel optimization framework for addressing inverse mean-field games, alongside an exploration of numerical methods tailored for this bilevel problem. The primary benefit of our bilevel formulation lies in maintaining the convexity of the objective function and the linearity of constraints in the forward problem. Our paper focuses on inverse mean-field games characterized by unknown obstacles and metrics. We show numerical stability for these two types of inverse problems. More importantly, we, for the first time, establish the identifiability of the inverse mean-field game with unknown obstacles via the solution of the resultant bilevel problem. The bilevel approach enables us to employ an alternating gradient-based optimization algorithm with a provable convergence guarantee. To validate the effectiveness of our methods in solving the inverse problems, we have designed comprehensive numerical experiments, providing empirical evidence of its efficacy. 
    more » « less